

 ECP 2008 DILI 518002 EUscreen

Exploring Europe’s Television Heritage in Changing Contexts

D4.8 – Report on semantic interoperability

with Europeana

Deliverable number
D4.8 – Report on semantic interoperability

with Europeana

Dissemination level Public

Delivery date 12 July 2012

Status Final

Author(s)
Vassilis Tzouvaras, Kostas Pardalis,

Marco Rendina, Johan Oomen

eContentplus

This project is funded under the eContentplus programme1

a multiannual Community programme to make digital content in Europe more accessible, usable and exploitable.

1 OJ L 79, 24.3.2005, p. 1.

D4.8 – Report on semantic interoperability with Europeana

 2

Document Information

Deliverable number: D4.8

Deliverable title: Report on semantic interoperability with Europeana

Actual date of deliverable: M30

Workpackage: 4

Workpackage title: Semantic Access & Integration

Workpackage leader: NTUA

Keywords: Interoperability, Europeana, OAI-PMH

D4.8 – Report on semantic interoperability with Europeana

 3

Table of Contents

DOCUMENT INFORMATION .. 2

TABLE OF CONTENTS.. 3

1 INTRODUCTION... 4

2 INTEROPERABILITY WITH EUROPEANA.. 5

3 MAPPING TABLE ... 12

4 APPENDIX A: EUSCREEN-->ESE.. 14

D4.8 – Report on semantic interoperability with Europeana

 4

1 Introduction

Present document constitutes the report for the Interoperability with Europeana. The Open
Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) is the chosen technology
for exporting metadata items to Europeana.

OAI-PMH is a low-barrier and widely used mechanism for repository interoperability. Data
providers are repositories that expose structured metadata via OAI-PMH. Service providers
then make OAI-PMH service requests to harvest that metadata. OAI-PMH is a set of six verbs
or services that are invoked within HTTP. In the context of the EUscreen project, OAI-PMH
provides a mechanism for interoperability between the Ingestion Tool and various other
modules or platforms. E.g. using the OAI-PMH terminology, the Ingestion Tool constitutes
the data provider while Europeana is able to request and retrieve metadata records via the
OAI-PMH verbs or services.

Section 2 illustrates the technical procedure to set up the exporting module. Section 3 presents
the mapping between EUscreen elements and the Europeana Semantic Elements. Finally, in
Appendix A, the xslt code is included.

D4.8 – Report on semantic interoperability with Europeana

 5

2 Interoperability with Europeana

The Ingestion Tool (constructed within the project, see D4.4 Report on EUscreen web
services) is capable for managing heterogeneous collections of metadata records while
exposing services for mapping and transforming from one metadata schema to another.

In order to extend the functionalities of the Ingestion Tool with the OAI-PMH protocol and
thus to expose Metadata through an interoperable mechanism, NTUA has implemented the
defined OAI-PMH verbs on top of the underlying and domain-specific data layer. An issue
that arises for the case of the Ingestion Tool is that while being able to manage collections of
metadata records, the OAI-PMH verbs operate on an item level, something that makes the
implementation of the appropriate verbs, directly on top of the Ingestion Tool data layer a
difficult task. For this reason and also because it is desired to also include a set of other
functionalities that are not directly associated with both the Ingestion Tool and the OAI-PMH
protocol, it was decided to follow a technical approach in which an exporting mechanism
exist between the Ingestion Tool platform and another data repository more suitable for the
needs of an OAI-PMH data repository.

The mechanism for delivering the EUscreen records to Europeana, consists of a data
processing layer which is responsible for iterating the records that are stored inside the
EUscreen portal index, transform and manipulate them, together with a data layer which is
exposed to Europeana by using an implementation of the OAI-PMH protocol. The overall
architecture is depicted in Figure 1.

Figure 1: Data Delivery Architecture

MINT PI is part of the Mint interoperability services suite and serves mainly as a scalable
mechanism for structured data processing. It is built using RabbitMQ in its core and utilizes a
number of message queue patterns as they were described earlier.

The approach of using message queues instead of a mechanism like Hadoop, was decided
based on the requirement to scale on both large and small datasets without reducing the
efficiency of the overall system. The overall architecture of MINT PI is depicted in Figure 2.

D4.8 – Report on semantic interoperability with Europeana

 6

Figure 2: The Mint Processing Interface (PI Architecture)

MINT PI (Processing Interface) is using two distinct queue patterns, an RPC Queue pattern
which is used for cases where the client desires to block while the processing is executed and
also awaits for a response in a pre-defined format and a Working Queue pattern which is used
for non blocking processing where the client submits the data for processing and does not
wait for a response. The first case is mainly used for the implementation of specific
commands, e.g. for implementing the cleaning or deletion of a repository, while the second
case is used for bulk processing of raw data, e.g. data transformation and enrichment of
records.

Scalability is achieved by the parallel processing of many workers for the case of the working
Queue and the existence of number of RPC Consumers that are running concurrently for the
case of the RPC Queue. In both cases the workers and the RPC consumers might be running
on different nodes of the cluster that is materialized while more workers and consumers can
be added to the system at any time and thus increasing the processing power of the system. At
the same time, the RabbitMQ broker is also scalable, new nodes can be added to the broker
and thus increasing the message per second ratio that can be handled by the system. In this
way an overall scalable architecture for message delivery is defined which can be extended
with minimal administrative effort.

MINT Processing Interface is not limited in a certain type of processing or data schema that is
delivered using the messages. This is achieved by utilizing a software design pattern named
the Strategy or Policy Pattern, using this pattern it is possible to select different algorithms for
execution on runtime.

The UML diagram that represents the Strategy or Policy pattern is depicted in Figure 3.
Another benefit from using this design pattern is the abstraction that is introduced between
the messaging layer of the system and the implementation of various algorithms for

D4.8 – Report on semantic interoperability with Europeana

 7

processing. A developer does not have to know about the intrinsic details of the messaging
system in order to implement another algorithm for data processing by Mint PI.

Figure 3: The Strategy or Policy Design Pattern (UML)

By following the architectural principles of Mint PI, a number of strategies have been
implemented in order to support the delivery of EUscreen metadata records to Europeana.
More specifically, the following strategies have been developed in order to support the
functionalities defined by the Semantic Search Pilot of the Indicate Project:

1. A strategy for applying the EUscreen Schema to ESE V3.4 Schema XSLT to the
metadata records.

2. A Strategy for enriching the records with multilingual subjects using the EUscreen
thesauri.

3. A strategy for checking the various URLs that are included inside the metadata
records for their validity.

4. Finally, a strategy that stores the records in the appropriate format inside the OAI-
PMH repository that is used as an interoperability API between EUscreen and
Europeana.

Initially, the producer is iterating the EUscreen metadata records directly from the Lucene
index that is used by the EUscreen portal. In this way it is possible to filter the records based
on the data provider and their status, e.g. if they are visible or not. These records are
encapsulated inside a message in JSON serialization including the appropriate XSLT to be
applied and various instructions for the complete set of strategies that will be applied on each
one.

Each worker thread fetches one message from the queue and applies in a predefined sequence
the implemented strategies. The first step is to apply the XSLT and generate the ESEV3.4
record, the next step is to enrich the records with multilingual thesauri terms for the case of
the dc:subjects elements using the EUscreen Thesauri. When the transformation and
enrichment is done, the final steps are to check the resulting records regarding the
accessibility of the digital resources, e.g. thumbnails, and finally to store the records inside
the OAI-PMH repository and thus making them accessible for harvesting by Europeana.

A core characteristic of the Ingestion Tool is that of being agnostic in regard to the Schema of
an imported dataset, a characteristic that is also inherited to the EUscreen OAI-PMH
platform. For this to be achieved the data layer of the platform has to be able to handle

D4.8 – Report on semantic interoperability with Europeana

 8

heterogeneous metadata Schemata. Based on this assumption, it was decided to implement the
underlying data layer using a NoSQL solution that does not enforce any particular schema
and thus it will be able to adapt to metadata records that conform to different Schemata.
The NoSQL solution that was used for the EUscreen OAI-PMH Platform is the MongoDB
document database. MongoDB is designed around the concept of documents that are
internally implemented as JSON document and internally stored using the BSON format
which stands for a binary serialization of the JSON format. It allows the existence of JSON
documents in the same database or even collection having different fields and thus it does not
enforce any specific data model schema. Finally it provides a rich set of native
implementations of drivers for communicating with the database while the JSON format
provides added value in the development of web application because the stored data do not
have to be transformed to a different format in order to be consumed by the applications.

The EUscreen OAI-PMH Platform Data Layer is designed around three distinct collections
that exist inside a MongoDB data base, collections can be perceived as tables of typical SQL
databases, although it is not required that each document conforms to a specific datamodel
and set of fields. These collections are the following:

1. Registry: in this collection the actual metadata records are stored and accessed by the
implemented OAI-PMH verbs.

2. Conflicts: every time a new dataset is imported in the OAI-PMH repository, it is
checked for the existence of duplicate records, if any exist, they are reported and
stored in a different collection while they are also associated with a specific Report
document.

3. Reports: every time an operation occurs on the OAI-PMH Repository, a report is
created which includes any useful information regarding the operation. For example,
in the case of import if any conflict is identified between the items it is reported for
further reference.

The Registry collection constitutes the core collection of documents for the OAI-PMH
repository. It contains all the records that it is desired to be exposed via the OAI-PMH
repositories. Each record is stored inside a JSON document which also contains various other
information that might be useful to the platform. More specifically, the record document
contains information regarding the organization to which the item belongs to, a unique hash
key that is generated by calculating the SHA1 hash of the string representation of the item, a
datestamp which represents the date and time the record was inserted and finally a namespace
“prefix” value which is required by the OAI-PMH specification. An example of a Registry
Document instance is depicted in Figure 4.

Figure 4: the structure of the Registry Document.

D4.8 – Report on semantic interoperability with Europeana

 9

As it was mentioned earlier, another important collection of documents that is stored as part
of the OAI-PMH repository is the Reports collection. The documents that are stored in this
collection represent a set of valuable information that corresponds to specific actions of the
repository platform. These actions are stored as values in the type attribute of the document
and take one of the following values:

1. Add: this type represent an addition action in which records are added in the registry.
2. Update: this type represents an update action in which a set for a specific import

already exist and it is updated by adding new metadata records.
3. Delete: this type represents the action of deleting a number of records from a specific

import that already exists in the registry.

Apart from the action type a number of other values are also stored as part of the Report
Document. More specifically, a set of valuable statics are stored; the number of conflicted
items that were identified, the total number of the inserted records and the total number of
items which corresponds to sum of the inserted records plus the conflicts. Two datestamps are
also stored as part of the Report document, one datestamp corresponds to the time of creation
of the document and the other to the time of closing of the document, in this way it is possible
for the repository to calculate the time it took to import a whole data set into the database.
Finally the date the import was published to the Ingestion Tool is stored together with the
name of the organization it belongs to. A visual representation of the Report document
structure is depicted in Figure 5.

Figure 5: the structure of the Report document.

The last collection of the OAI-PMH repository database is the conflicts collection. The
documents stored in this contain any metadata records that at the time of the exporting of an
import from the Ingestion Tool to the OAI-PMH repository were found to be conflicted.
These documents are quite simple in their structure. They contain an SHA1 hash of the
conflicted item that was found together with the record and a reference to the Report
document that it belongs to. In this way it is possible for someone to browse the actions that
were made on the repository (e.g. additions, deletions and updates) and directly view the
items that were found as conflicted for the cases of additions and updates. An example of a
conflict document is depicted in Figure 6. It has to be noted that the whole procedure of
creating unique hash codes and identifying conflicted items is an important functionality of
the EUscreen OAI-PMH repository platform because it provides a mechanism for creating
unique ids for the metadata records and also a mechanism for identifying duplicate.

D4.8 – Report on semantic interoperability with Europeana

 10

Figure 6: the structure of the Conflict document

On top of the data layer that was described so far a set of functionalities is built and more
specifically an RSS Feed based on Atom and of course the implementation of the actual OAI-
PMH verbs. The implementation of the verbs is based on the customization of the oaicat API
which provides an abstract implementation of the OAI-PMH v2.0 specified verbs that can be
customized in order to operate on top of different data layer technologies (e.g. flat XML files,
relational databases etc.).

The verbs that were implemented in order to work with the current OAI-PMH Repository
implementation are the following:

 Identify: this verb provides basic information regarding the running instance of the
OAI-PMH v2.0 data repository such as, contact details of the admin of the repository,
the base url that can be used by a harvester, a sample of an identifier among others.
For a complete list of the information provided by the Identify verb someone can refer
to the OAI-PMH specification. The information served by this verb does not have to
be stored in the underlying data layer but is part of the configuration files of the verbs
implementation.

 GetRecord: given the identifier of a record and the desired namespace prefix, this verb
fetches from the MongoDB database the corresponsive Metadata record and delivers it
as a response to the harvesting client. In the current implementation a query is
executed based on the prefix which is part of the Registry Document and the unique id
which is generated by the SHA1 hashing of the initial Metadata Record, this query
corresponds to an exact match on the database.

 ListIdentifiers: given a set name and a namespace prefix, this verb responds with a list
of identifiers of items that correspond to these criteria. The set name is identical to the
name of the organization. In this way it is possible to organize the records of the
repository around organizations/providers. Again, the namespace prefix is matched
with the prefix field of the Registry Document.

 ListRecords: this verb operates in a similar way to the ListIdentifiers with the main
difference being that instead of returning only the identifiers, the complete Metadata
Record is served.

 ListMetadataFormats: this verb is implemented by aggregating all the unique prefix
values that are stored in the data layer by executing an aggregation for uniqueness
query on the Registry collection. The resulting response that is served by this verb
contains all the unique namespace prefixes that exist in the OAI-PMH repository and
can be used for accessing the Metadata Records.

 ListSets: this verb returns a list of all the sets that exist in the OAI-PMH repository.
Sets are named after the organizations that provide metadata records to the OAI-PMH
repository, in this way it is possible for someone to retrieve only the records that are
associated with a specific organization. The way the values are extracted is similar to
the ListMetadataFormats verb.

D4.8 – Report on semantic interoperability with Europeana

 11

In every case that is needed, the verbs are implemented in such a way that they support
paging through the mechanism of resumption tokens as it is defined by the OAI-PMH
specification. The number of the returned items is specified through the configuration files of
the oaicat running instance. Finally, by being a servlet implementation, the oaicat specific
instance can be served through any of the available servlet contains that exist, e.g. tomcat,
jboss, jetty etc. Currently it is served via a running Apache tomcat instance.

The RSS feed is implemented following the Atom Syndication Format which is an XML
language used for web feeds while the Atom Publishing Protocol (APP) is a simple HTTP
based protocol for creating and updating web resources. The purpose of an RSS feed in the
current OAI-PMH repository implementation is to provide a mechanism for notifying
metadata consumers for the occurrence of specific actions, for example when new items are
added or updated to the repository in an automatic way. This is achieved by creating the RSS
Feed on top of the Reports collections that was described earlier, in this way every time a new
report is generated the feed is automatically updated and the subscribers are informed for the
associated action. The implementation of the RSS Feed service is based on the Apache
Abdera project.

The goal of the Apache Abdera project is to build a functionally-complete, high performance
implementation of the IETF Atom Syndication Format (RFC 4287) and Atom Publishing
Protocol (RFC 5023) specifications. The current implementation of the RSS Feed which is
based on the Apache Abdera project, is built by communicating directly with the MongoDB
based data layer of the OAI-PMH repository, every time a new Report document is inserted, it
is also transformed into the Atom protocol XML representation and published on the Atom
Feed that is maintained through the API of Apache Abdera. Finally, an Apache Abdera
instance can be served via any of the available servlet containers, but in the current
implementation it is contained in a Jetty servlet container for performance reasons.

D4.8 – Report on semantic interoperability with Europeana

 12

3 Mapping Table

The following Table illustrate the mappings from the Euscreen elements to the Europeana
Semantic Elements (ESE).

Open issues regarding the mapping towards ESE

The EUscreen metadata schema has some specific characteristics that make it particularly rich
in information compared to ESE. The underlying use of a multilingual thesaurus for the
classification of the items’ subject and the systematic translation in English of the titles and
the items’ descriptions, have made the mapping towards the ESE v3.4 schema not always
complete, leaving out sometimes some of the information present in the EUscreen schema.
In particular, we were not able to fully map into ESE the EUscreen multilingual thesaurus
terms used to classify our items in 12 different languages. Actually, in fact, in the Europeana
portal a proper use of the xml:lang attribute is still (August 2012) not supported, and the
dc:subject element in ESE, that we used to map our thesaurus terms, cannot be displayed and

D4.8 – Report on semantic interoperability with Europeana

 13

filtered based on the value of the xml:lang attribute. So, to grant a proper display in the
Europeana portal of this element, we had to map and export to ESE only the thesaurus terms
in English (with the attribute xml:lang=”en”), leaving out all the other languages.
We faced a similar problem in the mapping of the “Summary”, “Summary in English”,
“Extended description” and “Information”. These are different elements in the EUscreen
schema that semantically can be mapped only to one element in ESE, the “dc:description”.

Unfortunately we were not able to distinguish in some way these different elements inside the
“dc:description” container, neither to give them a fixed order of display. And for this reason,
to grant again a proper display of these elements in the Europeana portal, we were forced to
map and export only the “Summary” and the “Summary in English” in the “dc:description”
element, mapping instead the “Extended description” and the “Information” elements in the
“europeana:unstored” element, making them in this way not visible in the Europeana portal.

The consortium (notably the technical partners at NTUA) is in direct contact with the
ingestion team at Europeana regarding the issues above. This input will be taken into account
in future updates of the metadata standards maintained as by Europeana.

D4.8 – Report on semantic interoperability with Europeana

 14

4 Appendix A: Euscreen-->ESE

<?xml version="1.0" encoding="UTF-8"?>

<!--

This file was generated by Altova MapForce 2009sp1

YOU SHOULD NOT MODIFY THIS FILE, BECAUSE IT WILL BE

OVERWRITTEN WHEN YOU RE-RUN CODE GENERATION.

Refer to the Altova MapForce Documentation for further details.

http://www.altova.com/mapforce

-->

<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:dcmitype="http://purl.org/dc/dcmitype/"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:europeana="http://www.europeana.eu/schemas/ese/"
xmlns:europeana2="http://www.euscreen.eu/schemas/euscreen/"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:vmf="http://www.altova.com/MapForce/UDF/vmf"
xmlns:fn="http://www.w3.org/2005/xpath-functions" xmlns:grp="http://www.altova.com/Mapforce/grouping"
exclude-result-prefixes="europeana2 fn grp vmf xs xsi xsl">

 <xsl:template name="vmf:vmf1_inputtoresult">

 <xsl:param name="input" select="()"/>

 <xsl:choose>

 <xsl:when test="$input='Still'">

 <xsl:value-of select="'IMAGE'"/>

 </xsl:when>

 <xsl:when test="$input='Document'">

 <xsl:value-of select="'TEXT'"/>

 </xsl:when>

 <xsl:when test="$input='Audio'">

 <xsl:value-of select="'SOUND'"/>

 </xsl:when>

 <xsl:when test="$input='Video'">

D4.8 – Report on semantic interoperability with Europeana

 15

 <xsl:value-of select="'VIDEO'"/>

 </xsl:when>

 </xsl:choose>

 </xsl:template>

 <xsl:template name="vmf:vmf2_inputtoresult">

 <xsl:param name="input" select="()"/>

 <xsl:choose>

 <xsl:when test="$input='Rights Reserved - Free Access'">

 <xsl:value-of select="'http://www.europeana.eu/rights/rr-f/'"/>

 </xsl:when>

 <xsl:when test="$input='Rights Reserved - Paid Access'">

 <xsl:value-of select="'http://www.europeana.eu/rights/rr-p/'"/>

 </xsl:when>

 <xsl:when test="$input='Rights Reserved - Restricted Access'">

 <xsl:value-of select="'http://www.europeana.eu/rights/rr-r/'"/>

 </xsl:when>

 <xsl:when test="$input='Unknown'">

 <xsl:value-of select="'http://www.europeana.eu/rights/unknown/'"/>

 </xsl:when>

 </xsl:choose>

 </xsl:template>

 <xsl:output method="xml" encoding="UTF-8" indent="yes"/>

 <xsl:template match="/">

 <europeana:metadata>

 <xsl:attribute name="xsi:schemaLocation" separator=" ">

 <xsl:sequence select="'http://www.europeana.eu/schemas/ese/
C:/Users/cpard/Desktop/Projects/euscreen/ESEV3.4.xsd'"/>

 </xsl:attribute>

 <xsl:variable name="var1_instance" as="node()" select="."/>

 <xsl:for-each select="$var1_instance/europeana2:EUScreen/europeana2:metadata">

D4.8 – Report on semantic interoperability with Europeana

 16

 <xsl:variable name="var2_metadata" as="node()" select="."/>

 <europeana:record>

 <xsl:for-each
select="europeana2:ContentDescriptiveMetadata/europeana2:TitleSet/europeana2:TitleSetInEnglish/europeana
2:title">

 <dc:title>

 <xsl:attribute name="xml:lang">

 <xsl:sequence
select="xs:string(xs:string('en'))"/>

 </xsl:attribute>

 <xsl:sequence select="xs:string(.)"/>

 </dc:title>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ContentDescriptiveMetadata/europeana2:TitleSet">

 <xsl:variable name="var6_TitleSet" as="node()"
select="."/>

 <xsl:for-each
select="europeana2:TitleSetInOriginalLanguage/europeana2:title">

 <xsl:variable name="var8_title" as="node()"
select="."/>

 <xsl:for-each
select="$var6_TitleSet/europeana2:TitleSetInEnglish/europeana2:title">

 <xsl:if test="fn:exists((if
((xs:string($var8_title) = xs:string(.))) then () else xs:string($var8_title)))">

 <dcterms:alternative>

 <xsl:sequence
select="(if ((xs:string($var8_title) = xs:string(.))) then () else xs:string($var8_title))"/>

 </dcterms:alternative>

 </xsl:if>

 </xsl:for-each>

 </xsl:for-each>

 </xsl:for-each>

 <xsl:for-each select="europeana2:ContentDescriptiveMetadata">

D4.8 – Report on semantic interoperability with Europeana

 17

 <xsl:variable
name="var12_ContentDescriptiveMetadata" as="node()" select="."/>

 <xsl:for-each select="europeana2:clipTitle">

 <xsl:variable name="var14_clipTitle"
as="node()" select="."/>

 <xsl:for-each
select="$var12_ContentDescriptiveMetadata/europeana2:TitleSet/europeana2:TitleSetInOriginalLanguage/eur
opeana2:title">

 <xsl:if test="fn:exists((if
((xs:string($var14_clipTitle) = xs:string(.))) then () else xs:string($var14_clipTitle)))">

 <dcterms:alternative>

 <xsl:sequence
select="(if ((xs:string($var14_clipTitle) = xs:string(.))) then () else xs:string($var14_clipTitle))"/>

 </dcterms:alternative>

 </xsl:if>

 </xsl:for-each>

 </xsl:for-each>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ContentDescriptiveMetadata/europeana2:ThesaurusTerm">

 <dc:subject>

 <xsl:attribute name="xml:lang">

 <xsl:sequence
select="xs:string(xs:string('en'))"/>

 </xsl:attribute>

 <xsl:sequence select="xs:string(.)"/>

 </dc:subject>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ContentDescriptiveMetadata/europeana2:topic">

 <dc:subject>

 <xsl:attribute name="xml:lang">

 <xsl:sequence
select="xs:string(xs:string('en'))"/>

 </xsl:attribute>

D4.8 – Report on semantic interoperability with Europeana

 18

 <xsl:sequence select="xs:string(.)"/>

 </dc:subject>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ContentDescriptiveMetadata/europeana2:summary">

 <dc:description>

 <xsl:sequence select="xs:string(.)"/>

 </dc:description>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ContentDescriptiveMetadata/europeana2:summaryInEnglish">

 <dc:description>

 <xsl:attribute name="xml:lang">

 <xsl:sequence
select="xs:string(xs:string('en'))"/>

 </xsl:attribute>

 <xsl:sequence select="xs:string(.)"/>

 </dc:description>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:AdministrativeMetadata/europeana2:publisherbroadcaster">

 <dc:publisher>

 <xsl:sequence select="xs:string(.)"/>

 </dc:publisher>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ObjectDescriptiveMetadata/europeana2:contributor">

 <dc:contributor>

 <xsl:sequence select="xs:string(.)"/>

 </dc:contributor>

 </xsl:for-each>

 <xsl:for-each

D4.8 – Report on semantic interoperability with Europeana

 19

select="europeana2:ObjectDescriptiveMetadata/europeana2:SpatioTemporalInformation/europeana2:Temporal
Information/europeana2:productionYear">

 <dc:date>

 <xsl:sequence select="xs:string(.)"/>

 </dc:date>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ObjectDescriptiveMetadata/europeana2:SpatioTemporalInformation/europeana2:Temporal
Information/europeana2:broadcastDate">

 <dcterms:issued>

 <xsl:sequence select="xs:string(.)"/>

 </dcterms:issued>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ObjectDescriptiveMetadata/europeana2:TechnicalInformation/europeana2:materialType">

 <dc:type>

 <xsl:sequence select="xs:string(.)"/>

 </dc:type>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ContentDescriptiveMetadata/europeana2:genre">

 <dc:type>

 <xsl:attribute name="xml:lang">

 <xsl:sequence
select="xs:string(xs:string('en'))"/>

 </xsl:attribute>

 <xsl:sequence select="xs:string(.)"/>

 </dc:type>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ObjectDescriptiveMetadata/europeana2:TechnicalInformation/europeana2:itemDuration">

 <xsl:if test="fn:exists((if ((xs:string(.) != '00:00:00')) then
xs:string(.) else ()))">

 <dcterms:extent>

D4.8 – Report on semantic interoperability with Europeana

 20

 <xsl:sequence select="(if ((xs:string(.)
!= '00:00:00')) then xs:string(.) else ())"/>

 </dcterms:extent>

 </xsl:if>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ObjectDescriptiveMetadata/europeana2:TechnicalInformation/europeana2:aspectRatio">

 <dcterms:medium>

 <xsl:sequence select="xs:string(.)"/>

 </dcterms:medium>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ObjectDescriptiveMetadata/europeana2:TechnicalInformation/europeana2:itemColor">

 <dcterms:medium>

 <xsl:sequence select="xs:string(.)"/>

 </dcterms:medium>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ObjectDescriptiveMetadata/europeana2:TechnicalInformation/europeana2:itemSound">

 <dcterms:medium>

 <xsl:sequence select="xs:string(.)"/>

 </dcterms:medium>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:AdministrativeMetadata/europeana2:identifier">

 <dc:identifier>

 <xsl:sequence select="xs:string(.)"/>

 </dc:identifier>

 </xsl:for-each>

 <xsl:variable name="var48_cond_result_exists" as="xs:string?">

 <xsl:choose>

 <xsl:when

D4.8 – Report on semantic interoperability with Europeana

 21

test="fn:exists(europeana2:ObjectDescriptiveMetadata/europeana2:LanguageInformation/europeana2:language
Used)">

 <xsl:variable
name="var53_map_select_ObjectDescriptiveMetadata" as="xs:string*">

 <xsl:for-each
select="europeana2:ObjectDescriptiveMetadata/europeana2:LanguageInformation/europeana2:languageUsed"
>

 <xsl:sequence
select="xs:string(.)"/>

 </xsl:for-each>

 </xsl:variable>

 <xsl:if
test="fn:exists($var53_map_select_ObjectDescriptiveMetadata)">

 <xsl:sequence
select="xs:string(fn:string-join($var53_map_select_ObjectDescriptiveMetadata, ' '))"/>

 </xsl:if>

 </xsl:when>

 <xsl:otherwise>

 <xsl:for-each
select="europeana2:ContentDescriptiveMetadata/europeana2:originallanguage">

 <xsl:sequence
select="xs:string(.)"/>

 </xsl:for-each>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:variable>

 <xsl:for-each select="$var48_cond_result_exists">

 <dc:language>

 <xsl:sequence select="."/>

 </dc:language>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ContentDescriptiveMetadata/europeana2:TitleSet">

 <xsl:variable name="var58_TitleSet" as="node()"
select="."/>

D4.8 – Report on semantic interoperability with Europeana

 22

 <xsl:for-each
select="europeana2:TitleSetInOriginalLanguage/europeana2:seriesTitle">

 <xsl:variable name="var60_seriesTitle"
as="node()" select="."/>

 <xsl:for-each
select="$var58_TitleSet/europeana2:TitleSetInEnglish/europeana2:seriesTitle">

 <xsl:if test="fn:exists((if
((xs:string($var60_seriesTitle) = xs:string(.))) then () else xs:string($var60_seriesTitle)))">

 <dcterms:isPartOf>

 <xsl:sequence
select="(if ((xs:string($var60_seriesTitle) = xs:string(.))) then () else xs:string($var60_seriesTitle))"/>

 </dcterms:isPartOf>

 </xsl:if>

 </xsl:for-each>

 </xsl:for-each>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ContentDescriptiveMetadata/europeana2:TitleSet/europeana2:TitleSetInEnglish/europeana
2:seriesTitle">

 <dcterms:isPartOf>

 <xsl:attribute name="xml:lang">

 <xsl:sequence
select="xs:string(xs:string('en'))"/>

 </xsl:attribute>

 <xsl:sequence select="xs:string(.)"/>

 </dcterms:isPartOf>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ObjectDescriptiveMetadata/europeana2:SpatioTemporalInformation/europeana2:SpatialInf
ormation/europeana2:GeographicalCoverage">

 <dcterms:spatial>

 <xsl:attribute name="xml:lang">

 <xsl:sequence
select="xs:string(xs:string('en'))"/>

 </xsl:attribute>

D4.8 – Report on semantic interoperability with Europeana

 23

 <xsl:sequence select="xs:string(.)"/>

 </dcterms:spatial>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:AdministrativeMetadata/europeana2:rightsTermsAndConditions">

 <dc:rights>

 <xsl:sequence select="xs:string(.)"/>

 </dc:rights>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ContentDescriptiveMetadata/europeana2:extendedDescription">

 <europeana:unstored>

 <xsl:sequence select="xs:string(.)"/>

 </europeana:unstored>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ContentDescriptiveMetadata/europeana2:LocalKeyword">

 <europeana:unstored>

 <xsl:sequence select="xs:string(.)"/>

 </europeana:unstored>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:AdministrativeMetadata/europeana2:firstBroadcastChannel">

 <europeana:unstored>

 <xsl:sequence select="xs:string(.)"/>

 </europeana:unstored>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:AdministrativeMetadata/europeana2:originalIdentifier">

 <europeana:unstored>

 <xsl:sequence select="xs:string(.)"/>

 </europeana:unstored>

D4.8 – Report on semantic interoperability with Europeana

 24

 </xsl:for-each>

 <xsl:for-each
select="europeana2:ObjectDescriptiveMetadata/europeana2:information">

 <europeana:unstored>

 <xsl:sequence select="xs:string(.)"/>

 </europeana:unstored>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:AdministrativeMetadata/europeana2:identifier">

 <europeana:object>

 <xsl:sequence
select="xs:string(xs:anyURI(fn:concat(fn:concat(fn:concat(fn:concat(fn:concat(fn:concat('http://images1.noteri
k.com/domain/euscreen/thumbs/', fn:substring(fn:substring-after(xs:string(.), 'EUS_'),
xs:double(xs:decimal(1)), xs:double(xs:decimal(1)))), '/'), fn:substring(fn:substring-after(xs:string(.), 'EUS_'),
xs:double(xs:decimal(2)), xs:double(xs:decimal(1)))), '/'), xs:string(.)), '.jpg')))"/>

 </europeana:object>

 </xsl:for-each>

 <europeana:provider>

 <xsl:sequence select="'EUscreen Project'"/>

 </europeana:provider>

 <xsl:for-each
select="europeana2:ObjectDescriptiveMetadata/europeana2:TechnicalInformation/europeana2:materialType">

 <xsl:variable name="var84_result_vmf1_inputtoresult"
as="xs:string?">

 <xsl:call-template
name="vmf:vmf1_inputtoresult">

 <xsl:with-param name="input"
select="xs:string(.)"/>

 </xsl:call-template>

 </xsl:variable>

 <xsl:if
test="fn:exists($var84_result_vmf1_inputtoresult)">

 <europeana:type>

 <xsl:sequence
select="$var84_result_vmf1_inputtoresult"/>

 </europeana:type>

D4.8 – Report on semantic interoperability with Europeana

 25

 </xsl:if>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:AdministrativeMetadata/europeana2:iprRestrictions">

 <xsl:variable name="var87_result_vmf2_inputtoresult"
as="xs:string?">

 <xsl:call-template
name="vmf:vmf2_inputtoresult">

 <xsl:with-param name="input"
select="xs:string(.)"/>

 </xsl:call-template>

 </xsl:variable>

 <xsl:if
test="fn:exists($var87_result_vmf2_inputtoresult)">

 <europeana:rights>

 <xsl:sequence
select="xs:string(xs:anyURI($var87_result_vmf2_inputtoresult))"/>

 </europeana:rights>

 </xsl:if>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:AdministrativeMetadata/europeana2:provider">

 <europeana:dataProvider>

 <xsl:sequence select="xs:string(.)"/>

 </europeana:dataProvider>

 </xsl:for-each>

 <xsl:for-each
select="europeana2:AdministrativeMetadata/europeana2:identifier">

 <europeana:isShownAt>

 <xsl:sequence
select="xs:string(xs:anyURI(fn:concat('http://www.euscreen.eu/play.html?id=', xs:string(.))))"/>

 </europeana:isShownAt>

 </xsl:for-each>

 </europeana:record>

D4.8 – Report on semantic interoperability with Europeana

 26

 </xsl:for-each>

 </europeana:metadata>

 </xsl:template>

</xsl:stylesheet>�

